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Abstract. We show how to construct symbolic dynamics for the class of 2d-dimensional twist
mappings generated by piecewise strictly convex/concave generating functions. The method
is constructive and gives an efficient way to find all periodic orbits of these high-dimensional
symplectic mappings. It is illustrated with the cardioid and the stadium billiard.

1. Introduction

By a dictum of Poincaŕe, periodic orbits are ‘the only breach through which we may attempt
to penetrate an area hitherto deemed inaccessible’ [1]. Today this is a well established
fact in the theory of dynamical systems. Classical global characteristic properties like
Lyapunov exponents or diffusion coefficients are calculated by sums over periodic orbits
[2, 3]. Particularly interesting is the fact that quantum mechanical properties can also be
revealed by summation over classical periodic orbits [4, 5]. This has stimulated renewed
interest in classifying and calculating periodic orbits [6–8].

Symbolic dynamics uniquely labels all orbits of a dynamical system by bi-infinite
sequences [3]. The advantage of the variational approach to symbolic dynamics is nicely
illustrated by labelling periodic geodesics of geodesicflows on the torus or on surfaces
with higher genus as follows. Wind a string around the surface in an arbitrary way. The
variational principle states that pulling the string tight to its shortest possible length yields
a geodesic of the system by the stationarity of the length, respectively action. Winding the
string in a topologically different way gives a different geodesic. The topologically different
closed paths of a surface are classified by the fundamental group of the surface, so that the
distinct words from the fundamental group label distinct geodesics of the surface.

We present an analogous result formapswhich yields their symbolic dynamics and
a method to calculate all orbits. We follow the variational approach to symplectic maps
[9–11]. For an introduction to the two-dimensional case see [12], for 2d-dimensional maps,
d > 2, see [13, 14]. Our arguments hold for arbitraryd and since the global topology
of configuration space does not enter our considerations, we just assumex, x ′ ∈ Rd . The
calculation is formulated in a way that makes it almost independent ofd. The Lagrangian
L(x, x ′) acts as the generating function (of Goldstein type 1) for the map(x ′, y ′) = F(x, y).
The symplectic mapF is implicitly defined by

y = −∂L
∂x
=: −L1(x, x

′) y ′ = ∂L

∂x ′
=: L2(x, x

′) (1)

where the twist condition detL12 6= 0 must be fulfilled.Lij denotes the matrix of partial
derivatives with respect to theith and thej th argument. The mapping from(x, x ′) to
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(x, y) = (x,−L1) is the discrete analogue of the Legendre transformation. The periodic
action of a sequencex = (x1, . . . , xn) is given by

Wn(x) =
n∑
i=1

L(xi, xi+1)

∣∣∣∣
xn+1=x1

. (2)

The variational principle states that the critical pointsx∗ of the actionWn, for which
∇Wn(x

∗) = 0, correspond to the physical orbits of the system. For period-n orbits we
explicitly obtain

∂Wn(x)

∂xi
= L2(xi−1, xi)+ L1(xi, xi+1) = 0 (3)

for i = 1, . . . , n. For twist maps ofTd the boundary conditions are altered toxn+1 = x1+m
with m ∈ Zd . In summary, the problem of classifying and calculating period-n orbits of the
mapF is equivalent to the problem of classifying and calculating the critical points ofWn.

Classifying and calculatingall critical points of a function ofnd variables is a formidable
problem in general. We will single out a class of generating functionsL for which it can be
solved. For this class of systems our method gives a symbolic dynamics and simultaneously
a numerical method to find all periodic orbits. The approach is based on the assumption that
L is piecewise strictly convex or concave. We call a map obtained from such a generating
functionpiecewise strictly convex/concave twist maps, or CTM. Our arguments hold for both
convex and concave generating functions, but we will only state them for the convex case.
The concave case is obtained by replacingL by −L. Note that a convexL corresponds to
a dispersing billiard, while a concaveL corresponds to a focusing billiard. In the former
the action of periodic orbits is maximal, while in the latter the action is minimal.

Finding periodic orbits in Lagrangian twist maps respectively billiards by extremizing
the action is a well known method. In the general case it is necessary to find critical points
of arbitrary index, which is numerically done by finding the zeroes of the gradient of the
action. For CTMs this is not necessary and more efficient methods (e.g. conjugate gradients)
can be used for finding minima/maxima of the action.

Bunimovich’s treatment of 3D dispersing billiards [15] like the Sinai billiard was an
essential inspiration for this paper. Earlier work in this direction treated 2D dispersing
billiards [16–18]. Even though Bunimovich treats special 2D focusing billiards in [15], the
proof is not based on properties of the action but rather ‘on some general properties of
hyperbolic billiards’. Our approach shows that it actually is possible to also treat focusing
billiards with the variational approach. This is particularly interesting because it gives a
method that can be used to treat focusing billiards in higher dimensions.

2. Piecewise strictly convex twist maps

By definition of convexity the LagrangianL is strictly convex in a subdomainU if

L(tu+ (1− t)v, tu′ + (1− t)v′) < tL(u, u′)+ (1− t)L(v, v′) (4)

for all (u, u′), (v, v′) ∈ U ⊂ R2d and t ∈ (0, 1), see e.g. [19]. IfL is twice differentiable
in this subdomain then convexity is equivalent to the Hessian ofL

D2L(xi, xi+1) =
(
L11(xi, xi+1) L12(xi, xi+1)

L21(xi, xi+1) L22(xi, xi+1)

)
(5)

being positive definite on the subdomainU . Note that we requireL to be piecewise convex
as a function of both variables, as opposed to requiring either the kinetic part ofL or its
twist to be convex.



Symbolic dynamics and the discrete variational principle 9067

−π −
π
2

0 π
2

π

φ

−π

−
π
2

0

π
2

π

φ’

Figure 1. Contour plot of the generating function
L(φ, φ′) for the cardioid billiard. The function
has N = 2 smooth concave twisting regionsUi
surrounding the two maxima. Regions of non-
physical orbits are grey.

We always assume that the twist condition detL12 6= 0 holds. For CTMs we additionally
require that the domain ofL can be covered by subdomainsUi such thatL restricted to
eachUi is strictly convex, as e.g. shown in figure 1. Note that this implies thatL is not
differentiable at the boundary of the subdomainsUi . However, the singular setγ =⋃i ∂Ui
has zero measure. The singularity ofL induces a singularity for the action (2) on the set
0 = {x : (xj , xj+1) ∈ γ }. EachUi is called asmooth convex twistingregion. Our arguments
hold for both convex and concave generating functions, but we will only state them for the
convex case.

The essential observation is that the piecewise strict convexity ofL implies the piecewise
strict convexity ofWn. Since a strictly convex function has at most one minimum, we
can picture the action as a relief solely composed ofnd-dimensional paraboloid-shaped
patches. The place where patches meet corresponds to the singularity0. True paraboloids
would correspond to a quadratic Lagrangian, hence a linear map. The convexity argument
generalizes this to the nonlinear case. By convexity there is a simple superposition principle
for the functionsL, although they might be highly nonlinear. Take any two points
u = (u1, . . . , un) and v = (v1, . . . , vn) from Rnd such that the straight line connecting
them does not cross the singularity0. The strict convexity ofWn on the singularity-free
region containingu andv means that

Wn(tu+ (1− t)v) < tWn(u)+ (1− t)Wn(v). (6)

This is true because by (4) every single term in (2) is bounded from above. Again
assumingL to be twice differentiable on each subdomainUi we can alternatively prove
the strict convexity ofWn by showing that the HessianD2Wn of Wn is positive definite
everywhere outside the singularity set0. By definition this means thatztD2Wnz > 0 for
all z = (z1, . . . , zn) 6= 0, zi ∈ Rd . Explicitly we find

ztD2Wn(x)z =
n∑
i=1

(
zi
zi+1

)t
D2L(xi, xi+1)

(
zi
zi+1

)
(7)

with periodic boundary conditions onx and z understood. By assumption thatD2L > 0
each term in the sum is positive definite, such thatD2Wn is positive definite. Note that
D2Wn is not block diagonal, but instead the matricesD2L(xi, xi+1) partially overlap. We
now use the fact thatWn is piecewise strictly convex to construct symbolic dynamics.
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3. Symbolic dynamics

Consider the setsUj , j = 1, . . . , N on whichL is smooth convex twisting. Typically each
Uj contains a non-degenerate minimum ofL. Now we try to construct a periodic orbitx
with periodn that first visitsUj1 thenUj2 etc, in general(xi, xi+1) ∈ Uji . We denote the
corresponding region inRnd by U(J ), where the sequence

J = {j1, j2, . . . , jn} 16 ji 6 N (8)

will be a word in the symbolic dynamics with letters 1, . . . , N . Its infinite repetition labels
the periodic orbit in question. Every sequenceJ corresponds to a regionU(J ) in which
Wn is strictly convex. Ifx ∈ ∂U(J ) then it is in the singular set0. Since there areN
regions inL, there areNn different sequencesJ of lengthn, and therefore there areNn

disjoint regionsU(J ) of piecewise convexity ofWn. Every period-n orbit of the mapF
inducesn critical points ofWn, corresponding to the cyclic permutations of its points. We
have shown that all critical points are minima. Every minimum is contained in a convex
region, therefore it can be uniquely labelled by a sequenceJ . Up to a cyclic permutation
of the indices inJ the periodic orbit is therefore uniquely labelled, and we have found a
symbolic dynamics for the mapF . The standard approach to symbolic dynamics is via a
partition of the phase space ofF . We can lift our partition from the space of(x, x ′) to the
phase space of the map with coordinates(x, y) using the Legendre transformation (1). The
result is a partition of phase space which will have singularities as its boundaries, cf the
d = 1 approach in [20].

Every periodic orbit can be labelled by a sequenceJ . However, not every sequence
corresponds to a (physical) orbit. This phenomenon is called pruning. There are two ways in
which pruning comes about in our setting. (For billiards it is often convenient to work with
an artificially enlarged definition range forL, which introduces a third pruning mechanism.)
First, the setU(J ) might be empty, in which caseJ and all the words containingJ do not
correspond to orbits. We call thisintrinsic pruning, since it only depends on the geometry
of the partitionUj . Secondly, the minimum that by convexity is guaranteed to exist in
U(J ) [19] might be attained on the boundary∂U(J ). We call thisextrinsic pruning, since
it depends on the properties of the actionWn. In the linear case we would have a patch of
a parabola which does not include its minimum. So in order to prove that any of theNn

orbits exist, it is necessary to show thatU(J ) is non-empty and that the gradient ofWn is
pointing intoU(J ) on the boundary∂U(J ). In any case, lnN is an upper bound on the
topological entropy ofF , extending the result of [16] to focusing billiards whose Poincaré
map is a CTM. If every minimum exists there areNn fixed points of then-times iterated
map, so that the topological entropy cannot exceedn.

4. Finding periodic orbits

Using the gradient flow ofWn to find critical points is a well known idea. It is particularly
powerful in the present case because we can show thatWn is piecewise strictly convex,
hence we know thatall critical points ofWn are local minima. The hard part in findingall
critical points of a function usually is finding the saddle points, which do not exist in our
case. Note that ford = 1 this means that there are no inverse hyperbolic orbits, because by
a formula of [21] they correspond to saddles ofWn. Placing an initial conditionx(0) into
any of the convex piecesU(J ) of Wn and integrating the flow

ẋ = ∇Wn(x) x(0) ∈ U(J ) (9)
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will either converge to the local minimum, i.e. the critical point with labelJ , or, if there
is no minimum inU(J ), the flow will hit the singularity. In practice a different minimum-
finder that is more efficient than integrating the gradient flow would be used, see [22]. Note
that for the action of a non-CTM one has to use root-finding methods for the gradient,
typically Newton’s method, to locate critical points. But it is numerically much simpler to
find minima [22]. Therefore in our case the use of Newton’s method is discouraged, except
possibly for ‘polishing’ the solutions. We have now achieved the complete classification
of the basins of attraction of all the critical points. Under the gradient flow∇Wn the set
U(J ) is attracted to the critical pointJ , if it exists. Not only have we turned the problem
of calculating unstable periodic orbits into a stable numerical procedure, but we have also
simplified the problem of choosing the initial condition such that it converges to any desired
periodic orbit. The latter is the main practical problem that prevents standard methods from
finding all orbits efficiently.

Given aJ it might not be easy to find anx(0) in U(J ). As we have already pointed
out, U(J ) might even be empty. Concerning this intrinsic pruning one can construct the
forbidden wordsJ by the following procedure. The letterj can be followed by the letter
k if the setUk is reachable from the setUj . Denote the projections of a setU onto the
coordinate planex ′ by π ′(U). Now defineUj ∧ Uk as the subset ofUk that is reachable
from Uj ,

Uj ∧ Uk = {(x, x ′) ∈ Uk : x ∈ π ′(Uj )}. (10)

Thusj can be followed byk iff Uj ∧ Uk 6= ∅. The procedure can be refined by looking at
(Uj ∧Uk)∧Ul etc, possibly yielding longer and longer intrinsically pruned words. Similar
considerations apply for backwards time.

In the sense mentioned in the introduction, fixingJ only fixes the topology of the
periodic orbit. For a geodesic flow on a surface the topologically different paths are not
deformable into each other, because the topology of the surface prevents it. In our case the
situation is not so ‘clean’, because it is only the singularity that prevents the deformation
of one orbit into another one. However, we have reached a surprising level of conceptual
similarity to the case of geodesic flows by employing the discrete variational principle.

5. Application

One might think that the conditions placed onL are very restrictive, and with all the
singularities involved there are only exceptional dynamical systems that fulfil them. This is
correct—the conditions imply that a CTM is strongly chaotic in the sense ofd non-vanishing
Lyapunov exponent for almost every initial condition, as will be shown in a forthcoming
paper. Such maps are the exception. Thus, the examples are prominent ergodic systems: the
dispersing Sinai billiard in three dimensions was treated in [15]; here we treat the cardioid
and the stadium billiard as examples of the focusing case.

5.1. Cardioid billiard

The cardioid billiard was introduced in [23] and shown to have non-vanishing Lyapunov
exponent in [24]. The symbolic dynamics was introduced in [25, 26]. The above general
considerations prove that this symbolic dynamics and the numerical method used in [25]
are valid. For billiards the generating function readsL(s, s ′) = |r(s) − r(s ′)|, wheres is
the arc length of the billiard boundary andr(s) is the corresponding point on the boundary.
The contour plot of this function using polar coordinates for the cardioidρ(φ) = 1+ cosφ
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Figure 2. The periodic stadium billiard, which has a piecewise
concave generating function. Three orbits of period 8 (full), 3
(broken), and 6 (dotted) in the stadium billiard with period 4
(code 002000-20), 4 (code 001000-10) and∞ (code 111-1) in
the periodic stadium billiard, respectively.

is shown in figure 1. For billiards inside subdomains ofR2 the twist is positive, and the
orbits we are studying are maxima ofWn. Since for billiardsL(s, s ′) = L(s ′, s), figure 1
clearly shows the two maxima ofW2 corresponding to one period-two orbit.

By a calculation similar to the one in [25] it can be shown that for the cardioidL is
piecewise concave withN = 2 pieces. Intrinsic pruning does not exist for this system, we
even haveUj ∧ Uk = Uk. Besides some extrinsic pruning (called ‘s-pruning’ in [25]), the
most important pruning mechanism comes about by consideringL as a function of the full
square in figure 1, as opposed to restricting it to the physical non-shaded region. This is
related to the fact that the billiard is not convex, and not every line connectingr(s) and
r(s ′) is completely inside the billiard. However, the generating function is blind to the fact
that the connecting line intersects the billiard boundary. One could restrict the definition of
L to the non-shaded area of physical orbits in figure 1. From a practical point of view it is
more convenient to ignore this restriction, and find all periodic orbits, regardless of whether
they are physically forbidden or not. In a second step it is then decided if they are valid or
not, i.e. if they have a point(φi, φi+1) in the shaded region.

5.2. Stadium billiards

The stadium billiard of Bunimovich [27] has been well studied. We propose a new method
to classify and calculate its periodic orbits. The method proposed in [28] also uses a flow,
but it is different from ours. By the above reasoning it is proven that our symbolic dynamics
and the accompanying numerical method works if we can show thatL is piecewise convex.
For this consider the ‘unfolding’ of the stadium billiard into a billiard which is partially
unbounded and periodic, see figure 2. Alternatively, it could be defined on a cylinder.

In order to show that our method applies we have to analyse the generating functionL

between two half-circles of radius normalized to 1 with centres segregated by(n1x,m1y),
which is given by

L(n,m)(s, s ′) =
√
(coss − coss ′ − n1x)2+ (sins − sins ′ −m1y)2 (11)

where1y = 2r. If s ands ′ are unrestricted,L is a function onT2 with a quite complicated
structure. But we restrict to the half-circles facing each other as in figure 2, starting on the
right, −π/2 < s < π/2, ending on the left,π/2 < s ′ < 3π/2, and thereforen1x < 0.
Now we are going to show thatL is concave in the physical region, i.e. where a line has
exactly one intersection with each half-circle. With the notation

A = 1− cos(s − s ′)
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B = n1x coss +m1y sins

C = n1x coss ′ +m1y sins ′

we can write

L2 = n212
x +m212

y − 2(B − C)+ 2A (12)

and the Hessian is
1

L3

(
(B − A)(L2+ (B − A)) −(−C − A)(B − A)
−(−C − A)(B − A) (−C − A)(L2+ (−C − A))

)
. (13)

For the ray connecting the centres of the circles the Hessian is always negative definite.
Since a Hessian is symmetric the determinant must vanish in order to lose negative
definiteness. The determinant is given by

1

L4
(B − A)(−C − A)(n212

x +m212
y − (B − C)). (14)

The first two non-trivial factors are zero if the orbit is tangent to a circle. But a tangency is
only possible outside the physical region. The third factor is always non-zero in the physical
region because it is the projection of the orbit segment onto(n1x,m1y). Therefore (11)
is concave in the physical region. The concave region even extends into the non-physical
region up to the point of tangency on either half-circle (if it exists). If the chosen minimum-
finder always decreases the function value (like the gradient flow would) one can extend
the half-circles to full circles. This is convenient because the boundary conditions need
not be checked. Moreover, as soon as the minimum-finder leaves the half-circles one can
conclude that the corresponding orbit is pruned. The initial condition must of course connect
the half-circles. By extending the half-circles to full circles the singularity can be removed,
so that it does not pose any problem in the numerics.

An arbitrary numberc of reflections within one and the same half-circle can be subsumed
in the generating function

L(c)(s1, sc) = 2c sin
sc − s1

2|c| . (15)

In order to introduce a coding, we number the half-circles according to their horizontal
position byri and li for the right and left row, respectively. Now we start e.g. on the right
at r0, next hit l1, make a numberc1 of reflections withinl1, either clockwise(c1 < 0) or
anticlockwise(c1 > 0); then continue tor2 etc. The important quantities are the differences
1l

1 = l1 − r0, 1r
2 = r2 − l1 etc, where the upper index denotes motion to the left or right.

Thus we form sequences1l
1c11

r
2c21

l
3c3 . . . , where each entry is inZ, see figure 2 for some

examples. The period in the reduced stadium is the sum of the absolute values of these
integers. An inverse hyperbolic orbit of the stadium appears as a direct hyperbolic orbit with
doubled period in the periodic stadium (e.g. the broken-line orbit). These orbits have an
odd number of reflections with the vertical walls. If the number of reflections with both the
upper and lower vertical wall is odd, the orbit becomes unbounded in the periodic stadium.
In this case we have to change the periodic boundary conditions toxn+1 = x1+

∑
1i . For

the period-6 orbit in figure 2 the periodic actionW6 reads

W6(s1, s3, s4, s6) = L(−1,−1)(s1, s3)+ L(1)(s3, s4)+ L(1,−1)(s4, s6)+ L(−1)(s6, s1). (16)

One technicality remains because the generating function for reflections within one circle
(15) is only concave, rather than strictly concave, as must be the case for an integrable
system. The non-zero kernel ofD2L accounts for the fact that most periodic orbits of an
integrable system are not isolated, but come in families forming tori. But note that each
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appearance of the circle-generating function (15) in the action (2) and similarly in (7) is
preceded and followed by the strictly concave generating function between two half-circles
(11). Hence even if we try to take the kernel asz we do not get zero, because eachzi
appears in two neighbouring terms that are positive. Hence the action for the (periodic)
stadium billiard is piecewise strictly concave.
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[20] Bäcker A and Chernov N 1998Nonlinearity11 79
[21] MacKay R and Meiss J 1983Phys. Lett.98A 92
[22] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1988 Numerical Recipes in C. The Art of

Scientific Computing(Cambridge: Cambridge University Press)
[23] Robnik M 1983J. Phys. A: Math. Gen.16 3971
[24] Wojtkowski M P 1986Commun. Math. Phys.105 391
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